
Evolving an Embedded Domain-Specific Language in Java
Steve Freeman

M3P
London, UK

steve.freeman@m3p.co.uk

Nat Pryce
B13 Services
 London, UK

nat.pryce@gmail.com

Abstract
This paper describes the experience of evolving a domain-specific
language embedded in Java over several generations of a test
framework. We describe how the framework changed from a
library of classes to an embedded language. We describe the
lessons we have learned from this experience for framework
developers and language designers.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques –
Software libraries; D.3.2 [Programming Languages]: Language
Classifications – Specialized application languages; D.3.3
[Programming Languages]: Language Constructs and Features –
classes and objects, frameworks.

General Terms Design, Human Factors, Languages

Keywords Embedded Domain-Specific Language, Java, Mock
Objects.

1. A Good Programmer does Language
Design.

“[...] a good programmer in these times does not just write
programs. [...] a good programmer does language design,
though not from scratch, but building on the frame of a base
language.”
— Guy Steele Jr. [13]

Every program is a new language. That language may be confused
and implicit, but at a minimum there will be conventions and
programming interfaces that color the structure of the code. The
art of writing software well is to tease out the concepts in a
domain and make them concrete and tractable, to make the
language within the program explicit.

1.1 Programs as language
Consider how experts talk to each other. As part of becoming
expert, they will have acquired a dialect that succinctly expresses
the concepts of their discipline. This allows them to make
progress without explaining everything from scratch each time
and to skip what is not important. This efficient communication is

a form of Domain-Specific Language (DSL). It is specific and
focused, and only applies to the context of its domain1
We can think of a program as embodied expertise, a concrete
implementation of the understanding that a group of people has
developed about an activity. The team members are experts in the
application they are working on, and successful teams develop a
shared language to talk about it. Well-written programs reflect this
and their code expresses its behavior at the level of this shared
language. As Abelson and Sussman [12] put it,

“Expert engineers stratify complex designs […] The parts
constructed at each level are used as primitives at the next
level. Each level of a stratified design can be thought of as a
specialized language with a variety of primitives and means of
combination appropriate to that level of detail.”

DSLs promise advantages over general-purpose languages. Not
least, programmers tend to produce statements at the same rate
whatever the language, so high-level languages are more
productive [2]. Even so, few teams go to the trouble of writing
their own DSL: it’s hard to get right, it’s another syntax to learn,
and it can be expensive to maintain. The usual result is to give up
and just write the code in one of the standard programming
languages. Unfortunately, these do not support abstraction well
and we end up with code that is full of noise about programming,
not about the domain. It’s as if experts were forced to
communicate using lay terms, explaining every detail each time.
As one programmer put it, “If I had a nickel for every time I've
written ‘for (i = 0; i < N; i++)’ in C I’d be a millionaire” [14].

1.2 Embedded Domain-Specific Languages
In practice, however, no experts invent a new spoken language,
their dialect is based on the same language that they use to buy
groceries and read novels. The same can be done within
programming languages, we can embed domain specific features
into an existing programming language to take advantage of its
implementation and tools — an Embedded Domain Specific
Language (EDSL). Sharing an underlying language might even
allow us to combine EDSLs within a program. This is
straightforward, even standard practice, in “small syntax
languages” such as Lisp, Smalltalk, and Haskell [6][7]. It’s harder
in large-syntax languages, such as Java and C#. These usually
require techniques such as preprocessing or extending the
compiler [11], which breaks some of the advantages of working
with a host language and makes combining EDSLs difficult.
We think this is unacceptable, and this paper describes the
experience of and lessons from jMock, one attempt at making a
language explicit and embodying it in a framework. Through all
the changes to the framework, we were very concerned with the
readability of the code and its output. We wanted the code to be

1 For example, Computer Scientists use “constraints” to find the

widest range of possibilities; prison warders do the opposite.

Copyright is held by the author/owner(s).
OOPSLA’06 October 22–26, 2006, Portland, Oregon, USA.
ACM 1-59593-491-X/06/0010.

concise and self-explanatory; in this we were influenced by our
experience in using dynamic languages, particularly Smalltalk.
We also wanted the error messages to be obvious.

The step-change for us was when we realized we were embedding
a language in Java, rather than just writing a framework. jMock’s
use of chained interfaces to define syntax is its most disconcerting
feature and, we believe, one of its most effective.
The rest of this paper covers five topics: a brief introduction to
jMock, the framework we developed; a history of the ancestor
versions, showing how each one arose and what we learned from
it; a deeper discussion of jMock, its structure and qualities; some
design lessons from our experiences; and, finally, some
conclusions.

2. JMOCK: A Language for mock objects
In a previous paper [4], we described jMock, a library to support
Test Driven Development by making Mock Objects easy to
create. Mock Objects are used to guide the design and test the
implementation of object-oriented code. When using Mock
Objects, an object is tested in isolation from the real objects with
which it will interact in the production system. In a test, the object
is connected to “mock” implementations of the interfaces that it
uses. Those mock objects verify that the object calls them as
expected and fail the test as soon as they detect an unexpected
invocation or an invocation with incorrect parameters.

For example, if we were implementing a cache object we would
want to ensure that the cached value is loaded only once. A test
using jMock would have a Test containing a Cache, the object
under test, and a MockLoader, which simulates the behavior of a
real value loader. MockLoader implements an ObjectLoader
interface. The Test sets up the Cache object by passing it a
MockLoader.

Test cache
mock

Loader

ObjectLoader

load load

Figure 1. A Cache loading from an ObjectLoader

When the Test runs, it tells the MockLoader how it should
expect to be called by the Cache, and then exercises the Cache. If
the MockLoader is called incorrectly it will fail. Afterwards, the
Test will verify the results and that the MockLoader has been
called correctly. With jMock, the code might look like:
public void testDoesNotReloadCachedObjects() {
 mockLoader.expects(once())
 .method("load").with(eq(KEY))
 .will(returnValue(VALUE));

 assertSame("loaded object",
 VALUE, cache.lookup(KEY));
 assertSame("cached object",
 VALUE, cache.lookup(KEY));
}

The expectation line says that the Mock Loader is expecting the
method load to be called exactly once with an argument equal to
KEY and that it will return VALUE. The test calls lookup twice to
show repeated calls.
jMock has evolved over several years from a primitive class
library into a more complex framework. The driving force for the
change was the need for clearer and more powerful specification
of the expectations. As jMock evolved, its API changed from
being an object-oriented library into what we now understand to

be an embedded domain-specific language. The domain of that
language is the specification of how objects should interact within
a test scenario and the interpreter of the language is the testing
framework itself.

The following sections describe the evolution of jMock,
illustrating the forces that led to the development of an EDSL. To
stretch a metaphor, we arrived at the current design through
several generations of evolution. As we struggled with the limits
of each implementation, the environment changed and we moved
to new designs that were more effective. Curiously, some of our
rejected designs survive in frameworks that were developed in
isolation from the original team.

3. CAMBRIAN: Mockobjects.com
3.1 History
The first mockobjects.com [10] was an object-oriented framework
to help with hand-coded mock object classes. The original
concept arose out of several experiments, such as asking “what if
we wrote code with no getters” and, after frustrations with testing
against web servers, using IBM’s VisualAge for Java to generate
a stub implementation of Servlet. Practice and discussion within
the London XP community clarified the ideas, and the
mockobjects.com library was spun out from the code at Connextra
Ltd., where most of the work was done. It defined core concepts
such as MockObject, Expectation and Verifiable and
provided a library of Expectation classes that allowed some
flexibility in matching arguments beyond just equality. The design
was essentially a refactoring of duplicated assertions from test
cases into stub code.

3.2 Example
The mockobjects.com framework did not use dynamic proxies, so
mock objects had to be created by hand, derived from a
MockObject parent. We implemented a library of common
expectations (value, list, and set) to compare expected and actual
values during a test. The example below confirms that the agent
buys a quantity of something via the mainframe and notifies
auditing that this has happened. The test creates an agent,
passing in mock implementations of the mainframe and auditing
types.
public class MockMainframe extends MockObject
 implements Mainframe
{
 public ExpectationValue quantity =
 new ExpectationValue("quantity");
 public Ticket ticket;

 public void buy(long aQuantity) {
 quantity.setActual(aQuantity);
 return ticket;
 }
}

public void testBuysWhenPriceEqualsThreshold() {
 MockMainframe mainframe = new MockMainframe();
 MockAuditing auditing = new MockAuditing();
 Agent agent = new Agent(QUANTITY,
 mainframe,
 auditing);

 mainframe.quantity.setExpected(QUANTITY);
 mainframe.ticket = TICKET;
 auditing.boughtItems.addExpected(TICKET);

 agent.onPriceChange(NEW_PRICE);

 mainframe.verify();
 auditing.verify();
}

When the test calls the agent, the agent will call the buy method
on the mock mainframe which, in turn, will tell the quantity
expectation the value that has actually been passed in. The
expectation will confirm that this value is expected and fail if not.
Before finishing, the test must verify that each expectation has
been met to catch missed calls (there is some reflective
infrastructure in MockObject to simplify this).
The main benefit of this approach is that it is straightforward to
code the simple cases. The expectation libraries worked well for
testing equalities and generated good error messages, and it is
easy to ignore parameters that don’t matter. The main
disadvantage is that the mock classes have to be written by hand,
which breaks the momentum of the TDD process and clutters the
code base. It could also be hard to specify multiple expectations
on the same method.
The other disadvantage was that verification had to be called
explicitly. Although this made the intention of a test explicit and
we could implement stub behavior by simply leaving out the
verification, it was prone to error by people forgetting to verify
mock objects.

3.3 Experience
One of the striking features about this version was the influence of
the development environment, in this case VisualAge which was
the first Java IDE in which everything was “live”. On the positive
side, the Smalltalk-like environment with incremental compilation
made both navigation and stub generation very easy, so there was
no build cycle to slow the developer. VisualAge also worked well
with the “endo-testing” approach. Failing an assertion from inside
the target code meant that we could walk the stack in the
debugger, find the problem, fix it, and continue.
On the negative side, VisualAge never implemented dynamic
proxies, which meant that mockobjects.com could not exploit Java
reflection and so stagnated. This limitation did, however, lead us
in another useful direction. It made the cost of creating mock
classes in a conventional style (with private fields and accessors)
so high that we started to break the rules and concentrate on
usability. We designed the Expectation classes to be readable
when used in a chain of method calls, as in the line:
mock.boughtQuantity.setExpected(QUANTITY);

where mock is a mock object that has a public instance variable
boughtQuantity. VisualAge’s excellent code completion made
this approach very easy under the fingers.
Ironically, we discovered that the best way to develop code that
conformed to the Law of Demeter [9] was to have test code that
violated it. We also discovered that it is worth putting a great deal
of effort into making an API comfortable to work with and into
generating good error reports.
Our biggest mistake was to attempt to provide common mocks for
the entire Java API. First, this used up huge amounts of effort just
maintaining compatibility with different versions of the JDK and
J2EE. Second, the larger interfaces required enormous mock
implementations to cover all the options. These were too large to
understand, when all a test required was to verify a single method
call. A worse issue, however, was it diverted attention from the
most important use of mock objects which is as a design aid rather
than a testing tool. Third-party APIs cannot be changed, so the

tests do not drive their design. What we actually wanted people to
do was wrap external types in objects that meant something in the
domain of the program, using Mock Objects to help design those
wrappers.

4. DEVONIAN: Early DynaMock
4.1 History
One of the authors wrote a Mock Object library for Ruby and
found the advantages of dynamic types and complex argument
matching to be overwhelming, so he ported his ideas back to Java.
He wasn’t using VisualAge so he could use the latest versions of
Java with dynamic proxies, which meant that the DynaMock
library could define a mock object and its expectations entirely
within the code of a test. This streamlined the flow of test-driven
development because it meant that programmers were no longer
side-tracked by writing mock object classes. This development
was in parallel with the mockobjects.com framework.

4.2 Example
Here, the MockMainframe class has been replaced by a dynamic
proxy generated by the Mock class. Mock also includes methods
for setting expectations and stubs (not shown here) on itself.
Setting up the agent is now slightly more complex since the test
has to specify the interface types and cast the result.
public void testBuysWhenPriceEqualsThreshold() {
 Mock mainframe = new Mock();
 Mock auditing = new Mock();
 Agent agent = new Agent(QUANTITY,
 (Mainframe)mainframe.createInterface(
 Mainframe.class),
 (Auditing)auditing.createInterface(
 Auditing.class));

 mainframe.expectReturn("buy”,
 P.eq(QUANTITY), TICKET);
 auditing.expectVoid("bought",
 P.same(TICKET));

 agent.onPriceChange(NEW_PRICE);

 mock.verify();
}

The major differences in writing tests were the use of strings to
identify which method should be called (“buy” and “bought” in
this example), and the introduction of Predicates to match
parameters. Predicate defined a simple interface that received a
value and reported whether it matched or not. In this example, the
first expectation matches on equality and the second matches on
identity. Predicates were later renamed to Constraints in response
to user feedback; enterprise programmers were unfamiliar with
the term “predicate”.
Tests still had to verify each mock object explicitly.

4.3 Experience
This was our first attempt at “loosening up” our use of Java.
DynaMock had a simple, imperative object-oriented API that let
the user create expectations and stubs. Initially, the programmer
could use the framework to define an expected sequence of calls
that had to happen in the order specified. This proved too
restrictive and the next release allowed expected calls in any
order, but only let the programmer specify one set of constraints
per method. The library only supported simple expectations and
was not very extensible, so this basic API was sufficient.
DynaMock’s main innovation compared to the mockobjects.com
library and EasyMock [5] (another Mock Object library that uses

dynamic proxies) was the use of arbitrary Predicate objects to
match parameter values, not just Java equality. We had already
seen the need for extending matching with the mockobjects.com
library and had sometimes implementing matcher objects that
cheated by hijacking the equals method. Reifying the concept of
Predicate meant that the programmer could define any type of
match within a test, of which the most useful was substring.
In another early attempt at syntactic sugar, predicates were created
by factory methods of the P class that had terse but readable
names. For example, the P.eq(QUANTITY) clause above actually
implements
public static Predicate eq(Object expected) {
 return new IsEqual(expected);
}

where IsEqual implements the interface Predicate.
Programmers can create Predicate objects inline but this usually
made the test too hard to read. We were not yet prepared to
subclass JUnit’s TestCase, so the best we could do was to reduce
the clutter to “P”.
The other syntactic trick was to use overloading to handle
expectations with different numbers of arguments. For example,
we had:
expectVoid(String name);
expectVoid(String name, Object arg1);
expectVoid(String name, Object arg1, Object arg2);
// and so on, until
expectVoid(String name, Object[] args);

This was just about manageable in this version but caused
difficulties later when we introduced Java basic types, as will be
discussed below.
The use of strings to describe methods was clumsy and is not
handled by refactoring tools. In practice, however, we found that
this did not cause major problems as method names are referenced
by a limited number of tests; after changing a method name, the
programmer runs the tests and fixes any broken ones. Sometimes
it was even an advantage as it allows programmers to just type in
a new method name without having to define it in the interface
until they were ready. This approach was helped by the coding
style encouraged by using Mock Objects, which makes
dependencies as local as possible. In return, we found that the use
of constraints to specify precise, flexible expectations more than
compensated for the loss of flexibility caused by poor refactoring
support.

5. JURASSIC: DynaMock rewrite
1.1 History
Over time, the inherent limitations of both mockobjects.com and
DynaMock’s became increasingly evident. By now, the
community had moved off VisualAge to IDEs that supported Java
1.3 and hence dynamic proxies, so writing mock object classes by
hand became less tolerable. Similarly, DynaMock was too
inflexible with limitations such as only calling a method once.
The community started an effort to rewrite DynaMock, keeping
the same basic style of API but extending it to be more expressive
and extensible, and to generate better failure messages.

1.2 Example
At this level, the test is very similar but there have been some
improvements: instances of Mock are now bound to a mocked
interface at construction; some of the Mock methods have been

renamed to be more explicit, for example expectReturn is now
expectAndReturn; there are methods for specifying stub
behaviour (matchAndThrow) which can be mixed with
expectations in the same test; and, Predicate has been renamed
to Constraint.

Mock mainframe = new Mock(Mainframe.class);
Mock auditing = new Mock(Auditing.class);
Agent agent =
 new Agent(QUANTITY,
 (Mainframe)mainframe.proxy(),
 (Auditing)auditing.proxy());

public void testBuysWhenPriceEqualsThreshold() {
 mainframe.expectAndReturn(
 "buy", C.eq(QUANTITY), TICKET);
 auditing.expect(“bought”, C.same(TICKET));

 agent.onPriceChange(THRESHOLD);

 mainframe.verify();
 auditing.verify();
}

public void testDoesNotBuyIfMainframeUnavailable()
{
 mainframe.matchAndThrow(
 “buy”, C.ANY_ARGS,
 new NotAvailableException());

 agent.onPriceChange(THRESHOLD);
 mainframe.verify();
}

This test also shows a variety of Constraint, C.ANY_ARGS that will
match on any argument value. This shows that we don’t care what
is passed in here because what matters about the test is the failure
of the mainframe connection, the arguments are irrelevant.

As before, setting up mock objects was still clumsier than we
liked and the test still had to verify them explicitly.

1.3 Experience
This version was intended to combine the precise control of
mockobjects.com with the convenience of DynaMock. The most
important change was that a mock object could expect the same
method to be called more than once and with different arguments.
Argument constraints and other rules were now used to dispatch
invocations to expectations.

As the code evolved, it became more compositional. DynaMock
turned into a high-level convenience API for specifying expected
behaviour, layered above a framework. The framework
implemented a test for that behaviour with pluggable objects that
communicated through interfaces. Programmers could write their
own implementation of these interfaces to extend the framework,
adding new parameter constraints, matching rules, types of
expectation, or stubs for the behaviour of mocked methods. These
extension points were accessible through the high-level API.

Although we improved the API to be more consistent and to make
test code read more like a specification, the simple, imperative
style of the API became a problem. First, Mock had methods to
define two basic types of expectation: match allowed but did not
require the specified invocation, and expect required exactly one
invocation (multiple calls required multiple expectations). There
were variants of these methods for common stubbed behaviours,
for example, matchAndReturn returned a given value after firing
and matchAndThrow threw an given exception. To keep test code
easy to read, the return variant had overloads for each of the
primitive types so that the result of a mocked method could be

specified as a literal in the test. We also kept the overloaded
versions of the methods for up to four arguments to make it easy
to specify expected argument values. This produced a
combinatorial explosion of variants and overloads; in essence, we
were composing functionality in method signatures.

The result was a mess. First, additions to the DynaMock API
required so much extra work that the implementation of new
expectation types, such as expectAtLeastOnce, ground to a
halt. Second, another set of overloads let the user leave out the
argument constraints for an expectation. The intention was to
make writing tests simpler, but the reality was confusing: did a
missing argument specification mean that the expected method
had no arguments, or that the mock ignored arguments? Third,
code completion in the editor became unusable because the list of
possibilities was so large. This was worse than it might sound
because a significant requirement for the library was that it should
feel comfortable to use; we wanted it to work well in IntelliJ.

Another weakness was that the extensibility hooks made tests
difficult to read. Extensions to the API were not seamless: API
calls that used framework extensions looked very different from
those that used built-in DynaMock functionality. Finally, the
generic, extensible dispatching algorithm ended up making failure
messages harder to interpret not easier, despite the original goal of
the rewrite.

In spite of its failings, DynaMock helped us to understand the
structure of the domain. We had a reasonable implementation
layer but a weak published interface. One symptom of this
weakness was our choice of name for stubs: “match” describes the
implementation of the framework not the intent of the test.

2. CENOZOIC: JMOCK
2.1 History
Clearly we needed a rewrite. We started work on jMock to clean
up DynaMock. Our goals were to:

• make the API more self-consistent (some inconsistencies had
slipped into DynaMock)

• improve the readability of test code
• reduce the size of the API to make completion in the IDE

easier to use
• improve failure reporting
• allow the user to specify the partial ordering of expected

method invocations
• add more expectation types: at least once, never, exactly, etc.
In the end, the underlying implementation did not change much,
but we substantially reworked the public interface.

2.2 Example
We now specify expectations using a “call-chain” syntax which
we will describe below. This gives a more declarative style of
specification, built up from the component parts of an expectation.
Creating and passing in mocks is still clumsy because of the type
declarations, we have accepted this as a fundamental limitation.
Mock mainframe = mock(Mainframe.class);
Mock auditing = mock(Auditing.class);
Agent agent =
 new Agent(QUANTITY,
 (Mainframe)mainframe.proxy(),
 (Auditing)auditing.proxy());

public void testBuysWhenPriceEqualsThreshold() {
 mainframe.expects(once())
 .method(“buy”).with(eq(QUANTITY))
 .will(returnValue(TICKET));
 auditing.expects(once())
 .method(“bought”).with(same(TICKET));
 agent.onPriceChange(THRESHOLD);
}
public void testDoesNotBuyIfMainframeUnavailable()
{
 mainframe.stubs().method(“buy”)
 .will(throwException(
 new NotAvailableException());
 auditing.expects(never()).method(“bought”);
 agent.onPriceChange(THRESHOLD);
}

We introduced a MockObjectTestCase class that extends
JUnit’s TestCase for two main reasons. First, mock objects are
now verified automatically. Mock objects are created with a
factory method mock which registers the new mock object with
the test case. We have overridden the test case implementation to
verify any available mock objects after the test method has run but
before tear down. Second, to minimise syntax noise we moved the
factory methods for constraints and other features into
MockObjectTestCase. In the example, eq and same return
constraint objects, and returnValue and throwExpection
return method behaviour stubs.

2.3 jMock’s call-chain syntax
As with the mockobjects.com library, we have found that the way
to encourage good style in our production code is to break the
rules in the test code—or at least follow a different set of rules.
The original intention was just to reduce unnecessary text by
using something like Smalltalk cascades, a syntax for sending
multiple messages to the same object:
anExpectation
 count: Once;
 method: ‘buy’;
 argument: (Quantity equalTo);
 result: Ticket;
 self.

Writing Java such as:
expectation.setCount(once());
expectation.setMethod(“buy”);
expectation.setArgument(eq(QUANTITY));
expectation.setResult(TICKET);

is just too noisy, so we had each method return the object itself to
support cascade-like chaining. We quickly realised that most of
the methods available at any given point in the set up of an
expectation are not immediately relevant, which gave us the idea
of limiting the options with interfaces.
Briefly, each method that defines part of an expectation returns an
interface that can define the options for the next part; it’s like a
workflow defined in the Java type system. In our example,
mainframe is of type Mock, expect takes a matcher (usually one
that checks how often the target method is called) and returns a
NameMatchBuilder. In NameMatchBuilder, method takes a
constraint that identifies the target method (usually a String)
and returns an ArgumentMatchBuilder, and so on. The chain
looks like:

mainframe.Mock.expects(once()) →
NameMatchBuilder.method(“buy”) →
ArgumentMatchBuilder.with(eq(QUANTITY)) →
StubBuilder.will(returnValue(TICKET));

The result is that the editor will prompt the
developer with the available actions for each
clause in the expectation.

Figure 3. Code completion within an expectation

There are also interfaces for specifying additional constraints such
as ordering between expectations. In addition, some of the
interfaces extend each other to allow users to drop unnecessary
clauses, for example:

mainframe.expects(once())
 .method(“finish”).after(“start”);

says that we expect the finish method to be called exactly once
at some point after the start method. We don’t care what
arguments the finish methods takes, it’s not part of this test. If
it’s important to specify a method that has no arguments, then we
would write:

mainframe.expects(once())
 .method(“finish”).withNoArguments();

Under the covers, all these interfaces are implemented by an
InvocationMockerBuilder class that gathers the arguments
and constructs an expectation object.

2.4 Embedded language and core
JMock now consists of a “builder” layer, its public API, and an
“interpreter” layer that runs the definitions built with the API.

The jMock interpreter accepts method invocations from a test and
determines how to respond based on the expectations that have
been set up by the builder layer. The appropriate response might
be to fail an assertion, return a value, throw an exception, or

invoke a user-supplied behavior. An expectation is stored as an
Invokable, a combination of a set of InvocationMatchers
(which decide if this Invokable will match the invocation), and a
Stub (which implements any behavior we want the mock object
to reproduce). Each InvocationMatcher matches a feature of
an invocation: the method name, the values of the arguments, the
number of times the method has been called, and so on. An
InvocationMatcher, in turn, is usually implemented with
Constraint objects which check incoming values, perhaps for
equality or the presence of a substring.
When a test runs, it will trigger the target code to invoke a method
on a mock object that is standing in for one of the target code’s
collaborators. The mock object dispatches to each of its
Invokables in turn until one of them accepts the invocation as a
match, at which point it will call the Invokable’s Stub. The test
fails if there is no match. At the end of the test, all the
Invokables are verified to make sure nothing has been missed.
In practice, this verification is passed on to the
InvocationMatchers as they will know whether they’re
missing an invocation.
In the syntax builder layer, calling expects or stubs creates a
new Invokable within the mock object. The subsequent clauses
in the expectation definition create InvocationMatchers in the
new Invokable and populate them with Constraint objects
and associated values to be matched. The will method assigns a
Stub object to the Invokable.

5.1 jMock benefits
We have found some real advantages from jMock’s peculiar
builder syntax:

Orthogonality: each aspect of an expectation is handled separately
which makes it easy to add new expectation styles and options. In
retrospect, much of the design of the builder API came from
simply removing duplication. This resulted in a huge
improvement in maintainability since methods became focussed
and simpler. We avoid the DynaMock explosion by having pieces
we can compose together rather than trying to implement all the
combinations as methods. This also helped with handling some of
Java’s quirks. All the method overloading to handle primitive
types is now limited to a small number of clauses that can be used
in several places.

Guidance: there are many software libraries where programmers
are required to set up complex object state with no more guidance

Proxy Dispatcher
Invokable Invokable Invokable

Invokable Invokable Matcher
Invokable Invokable Constraint

Stub

Mock Syntax
Builder Test

Code
Under
Test

 refers
to
creates

Syntax

Interpreter

Figure 2. jMock Syntax and Interpreter layers

than a group of setters. Given a statically typed language, we
should exploit its features and tools. Combining type-chaining and
IDE completion means that it’s actually difficult to leave a
complex object’s state inconsistent. In addition, the orthogonality
of the builder library means that the programmer is prompted with
a manageable list of options when using completion in an
expectation.

Seamless extensibility: we have defined intervention points
throughout jMock to allow users seamlessly to extend the
language. This means that users can make tests as expressive as
possible, without breaking out of the EDSL. Programmers can
inject their own implementations of components in the interpreter
layer and use the same syntactic sugar techniques to extend the
embedded language. This is discussed further in Section 6.4.

Consistency: each clause of the embedded language fits in exactly
one place, so tests always look the same. This makes the tests
easier to read, especially at a glance, even for more complex
specifications.

Clear shorthand: dropped clauses default to weaker assertions.
For example, if there is no with clause then the expectation
ignores the parameters included in an invocation. This is simpler
and clearer than the earlier use of overloaded methods.

5.2 Experience
Once we realised that the API had become a domain-specific
language, development became more straightforward. Firstly, it
encouraged a clean separation of the syntax and interpretation into
layers. Secondly, it freed us from following the common Java
coding style where appropriate. The interpreter framework is
written as normal Java but we invented our own conventions for
the builder level where the “call-chain” style made code read like
a declarative specification instead of an imperative API. The
result is striking if we remove the punctuation from the Java:

mainframe expects once method “buy”
 with eq QUANTITY will returnValue TICKET

auditing expects once method “bought”
 with same TICKET

Once again the development environment was a significant
inspiration for some of the ideas. Using a modern IDE with good
code completion, it seemed obvious to exploit the technology to
guide the programmer to the next action.

We were surprised by some of the benefits of working with the
builder syntax. For example, the ability to drop clauses to weaken
an assertion meant that tests could focus just on the relevant
criteria. Apart from making the intention clearer, this made
refactoring easier as tests would not break when irrelevant
features changed.

A further advantage we now have is that we believe we can
superimpose different syntaxes over the same engine. We started
writing an EasyMock layer for jMock and the results looked
promising but we ran out of time.

One regret was the need to subclass TestCase, which makes it
harder to integrate jMock with other frameworks that also extend
TestCase. In our view, this shows that version 3 of JUnit,
although wildly successful, is too closed. We couldn’t do what we
needed to without overriding part of the infrastructure.

6. How to write a language in Java (and C#)
"[…] like a dog's walking on his hinder legs. It is not done
well; but you are surprised to find it done at all."
— Dr. Johnson

6.1 Introduction
We find that when we “refactor mercilessly” we end up reifying
concepts that have previously been implicit within the methods of
our classes. We discover logic duplicated among classes and
move that logic into shared objects. In a well factored object-
oriented program, the behavior of the system is an emergent
property of the collaborations between simple objects. We now
define our program's behavior by writing code to instantiate
objects and plug them together, not by scripting it explicitly in
imperative code. The collaborating objects have become an
interpreter for a new, higher-level language and the setup code
has become statements in that language.

This raises the level of abstraction at which we program, changing
our programming language from being an imperative language, in
which we script the exact behavior we want, to a declarative
language, in which we state what we want to happen and let lower
layers handle the actual interpretation of our wishes.

Throughout the history of programming there have always been
languages that are more compatible with this approach, such as
Lisp, Smalltalk, and Haskell. These languages make it easy to
build up to higher level abstractions: few syntax rules; few
keywords; little or no syntactic distinction between language,
library and user program; lightweight syntax for anonymous
functions that close over their lexical scope; syntactic macros;
combinators; monads. In these environments the act of
programming is to develop a language that describes the domain
and then write the program in that language.

“As well as top-down design, [Lisp programmers] follow a
principle which could be called bottom-up design — changing
the language to suit the problem. In Lisp, you don’t just write
your program down toward the language, you also build the
language up toward your program. […] Language and
program evolve together. Like the border between two
warring states, the boundary between language and program is
drawn and redrawn, until eventually it comes to rest along the
mountains and rivers, the natural frontiers of your problem. In
the end your program will look as if the language had been
designed for it.” [6]

When programming in the usual commercial languages, such as
Java and C#, just refactoring away duplication is not enough. The
resulting code that creates the graph of collaborating objects does
not clearly express the system behavior being defined. There are
few features that let the programmer hide the implementation
details and express only the higher-level concepts. The statements
that instantiate objects and connect them with their collaborators
have so much “administration syntax” that they obscure the intent
of the programmer. What would be a single statement in a
domain-specific language must be written as a list of new
statements combined with calls to getters and setters.
In conventional languages we need an additional layer to help the
programmer express intent — to provide a syntax for the
interpreter our refactoring has produced. While writing jMock
(Java) and NMock2 (C#) we have discovered some techniques

that can be used to write an EDSL in a language with heavyweight
syntax.

6.2 Separate syntax and interpretation into layers
The code that defines the syntax of an EDSL will, by necessity,
make quite unconventional use of the host language. If the
implementation of the syntax is mixed with the implementation of
its interpretation, the underlying framework will be hard to
understand and maintain. Therefore, separate the two concerns,
syntax and interpretation, into different layers. The interpretation
layer should be an object-oriented framework implemented in the
conventional style of the host language. The syntax layer can
abuse the facilities of the host language as described below.

6.2.1 Use interfaces to define the syntax.
The grammar of the embedded language can be defined by
interfaces. Each interface method defines a clause and returns a
reference to the interface that defines the next clauses. For
example, to define method, with, withAnyArguments,
withNoArguments, after, and will as clauses in an EDSL, we
declare these interfaces:

interface MethodNameSyntax {
 WithSyntax method(String name);
}

interface WithSyntax {
 OrderSyntax withAnyArguments();
 OrderSyntax withNoArguments();
 OrderSyntax with(Constraint c1);
 // etc.
}

interface OrderSyntax {
 StubSyntax after(String id);
}

interface StubSyntax {
 void will(Stub stub);
}

Chaining the interface types together ensures that the sequence of
clauses must be:

• method
• with or withAnyArguments or withNoArguments
• after
• will
So the syntax will allow

mock.expects(once())
 .method(“m”)
 .withNoArguments()
 .after(“n”)
 .will(returnValue(20));

but not

mock.expects(once())
 .withNoArguments()
 .will(returnValue(20)) // out of sequence
 .method(“m”)
 .after(“n”);

6.2.2 Use interface inheritance to define optional
clauses
To make a clause optional, define it in an interface derived from
an interface that defines later clauses. For example, if we change
OrderSyntax to extend StubSyntax, then we can call either
after or will after any of the with clauses.

interface OrderSyntax extends StubSyntax {
 StubSyntax after(String id);
}

mock.expects(once())
 .method(“m”)
 .withNoArguments() // no after() clause
 .will(returnValue(20));

Our experience is that allowing clauses to be optional makes
jMock specifications easier to read. They only need to define the
expectations that are relevant to a test; everything else can be left
out.

6.2.3 Implement the syntax interfaces in Builder
objects.
The syntax interfaces are naturally implemented according to the
Builder pattern [3]. The Builder classes implement the syntax
interfaces by having the syntax methods create and set up objects
in the interpretation layer.

The simplest approach is to have a single Builder class implement
all the syntax interfaces. Each syntax method returns the builder
object itself as the next interface in the chain.

class ExpectationBuilder
 implements MethodNameSyntax, WithSyntax,
 OrderSyntax, StubSyntax

{

 private Expectation expectation;

 public WithSyntax method(String name) {
 expectation.setMethodNameConstraint(
 new IsEqual(name));
 return this;
 }

 public OrderSyntax withNoArguments() {
 expectation.setArgumentConstraints(
 new Constraint[0]);
 return this;
 }
 // etc.
}

6.3 Use, and abuse, the host language.
The conventions of the host language are unlikely to apply to an
EDSL, given that the motivation for writing an EDSL is to
overcome limitations in the host. To make the EDSL readable, it
may need to break conventions such as capitalisation, formatting,
and naming for classes and methods. One of the distinctions that
encourages this practice is that EDSLs tend to be declarative
while the host language is imperative.

In jMock, for example, one of the most startling practices is our
extensive use of “train-wreck” statements2. We would normally
regard this as very bad practice in object-oriented code because it
violates the Law of Demeter, exposing the internal structure of
objects and increasing coupling. Train wreck statements are,
however, the only way we have found to emulate a new syntax in
Java or C#. We limit their use to the syntax layer, which exists to
abstract away the interpretation layer, so interface-chained code is
not tightly coupled to any implementation details.

2 An object-oriented “train-wreck” is a list of method calls

chained together, often used to navigate a data structure, as in:
order.getParty().getAddress().getPhoneNumber()

6.3.1 Implement a “container” to provide syntactic
sugar for code in its scope.
Java code to create and set up objects generates a lot of syntax
noise that is not relevant to the domain. To keep the EDSL
readable and focussed, we use helper methods to clean up the
syntax for creating the initial builder object and other objects to be
loaded into the interpreter. These helper methods must be defined
in a scope that can be referenced by the code using the EDSL.

In jMock, for example, test fixtures extend
MockObjectTestCase to inherit methods that specify
expectations on a mock object. In this example, the mock method
creates a MockObject and registers it to be verified at the end of
the test. The other helpers create constraints and stubs to
implement the expectation.

public class BuyerTest extends MockObjectTestCase
{
 void testAcceptsOfferIfLowPrice() {
 offer = mock(Offer.class);
 offer.expects(once())
 .method(“buy”)
 .with(eq(QUANTITY))
 .will(returnValue(receipt));
 // etc.
 }
}

abstract class MockObjectTestCase
{
 Mock mock(Class mockedType, String roleName) {
 Mock mock = new MockObject(mockedType,
 roleName);
 registerMockForValidation(mock);
 return mock;
 }

 Stub returnValue(Object value) {
 return new ReturnStub(value);
 }

 InvocationMatcher once() {
 return new CallCountMatch(1);
 }

 Constraint eq(Object value) {
 return new IsEqual(value);
 }
 // etc.
}

NMock-2, on the other hand, defines static methods of classes
with names that work well when used in expectations. Whereas
jMock uses a method eq to create an equality constraint, NMock
uses the method Is.Equal, a static method named Equal of a
class named Is.
We have whimsically termed this scope a “sugar bowl” because it
contains the syntactic sugar of the EDSL.

6.3.2 Take advantage of host language features.
Not all features of heavyweight languages are a hindrance. C#, for
example, supports operator overloading which has been used in
Nmock-2 to define operators that combine constraints.

Expect.Once.On(mockLogger)
 .Method(“LogError”)
 .With(Has.Substring(USER_NAME)
 & Has.Substring(“access denied”));

The equivalent statement in jMock is unwieldy and hard to read3
because Java does not allow operator overloading:
mockLogger.expects(once())
 .method(“LogError”)
 .with(and(stringContaining(USER_NAME),
 stringContaining(“access denied”)));

6.3.3 Appropriate intrusive syntax.
Sometimes the host language's intrusive syntax can be twisted into
being useful for the EDSL. For example, this NMock-2 example
specifies the order in which we expect an alarm clock object to
call the Play method of a sound player: first the alarm clock will
play the “on” sound, followed by “tick” and “tock” in either order,
finally followed by the “alarm” sound. NMock-2 defines blocks of
ordered or unordered expectations with the C# using statement.

Mockery mocks = new Mockery();

ISoundPlayer soundPlayer =
 (ISoundPlayer)mocks.NewMock(
 typeof(ISoundPlayer));

AlarmClock alarmClock =
 new AlarmClock(soundPlayer);

using (mocks.Ordered) {
 Expect.Once.On(soundPlayer)
 .Method(“Play”).With(ON_SOUND);

 using (mocks.Unordered) {
 Expect.Once.On(soundPlayer)
 .Method(“Play”).With(TICK_SOUND);

 Expect.Once.On(soundPlayer)
 .Method(“Play”).With(TOCK_SOUND);
 }

 Expect.Once.On(soundPlayer)
 .Method(“Play”).With(ALARM_SOUND);
}

We've learned to experiment and try different designs of our
embedded language until we find the best fit between
expressiveness and use of language features. Often simple
changes to naming conventions can make all the difference. The
name used for the Mockery above was chosen to make the
following using statements clearly express their effect.

6.3.4 Tread a fine line.
As always, there is a balance to be struck when overloading
operators or abusing keywords to create an embedded language. If
in doubt, be conservative and define operators and keywords to
have as close a meaning in the embedded language to that which
they have in the host language or its standard library.

6.4 Don’t Trap the User in the EDSL
DynaMock did not let programmers use the framework objects to
extend the mock class; they were stuck with the constructs that we
had implemented. We received a constant stream of feature
requests which we could not fulfill because there were too many
and, more importantly, because they were not generic enough to
include in a shared library.
This taught us that even a simple DSL will not meet every user’s
needs; it must be extensible to be useful in practice. This is
especially true of an embedded DSL where a key advantage is the
ability to integrate code written in the host language. Given that

3 Except to lisp programmers

we wrote an EDSL to provide the expressiveness that we could
not get from the base language, we expect our users to need
similar expressiveness in the EDSL.
There are two parts to making an EDSL extensible:
Extension points in the interpreter: most of the key objects in the
framework are defined as interfaces and very few are instantiated
directly. There is always a route for the programmer to substitute
different implementations of components in the interpreter layer.
In the current version of jMock it is even possible to replace the
way the dispatcher searches for a matching Invokable.
Similarly, the arguments to builder methods are declared as
interfaces,. The builder framework provides a veneer over these
“low-level” features but still makes them accessible.

Seamless extensions to the language: the point of embedding a
DSL is to let programmers clearly express their intent, which
means extending the language into their domain. This will not
work well if extensions look different from the rest of the DSL.
The EDSL syntax should make no distinction between the built-in
features of the language and those provided by the user to support
their application, like the small-syntax languages we prefer.

Programmers can use the same syntactic sugar techniques as
jMock by extending MockObjectTestCase. For example, if I
want to ensure that the target code sends expired tickets to be
cleaned up, I might write:

cleaner.expects(once())
 .method(“remove”).with(ticketExpiredOn(DATE))

where ticketExpiredOn is a sugar method:

public Constraint ticketExpiredOn(Date date) {
 return new ExpiredOn(date);
}

and ExpiredOn is an implementation of Constraint that returns
true if it’s passed an expired ticket. This expectation expresses
exactly what I’m trying to achieve in the test in terms of the
application domain, rather than in terms of dates.

The ExpiredOn class is an extension of the interpreter and
ticketExpiredOn is an extension of the language. Both have
been added with no change to the shared framework.

6.5 Map error reports to the syntax layer
Error reporting is critical to the usability of an EDSL. Errors are
detected in the interpreter level but the user is programming to the
syntax level. We cannot expect the user to translate errors back to
the syntax level by hand; they may not even know how the
internal features are implemented. Error reporting is hard but, in
our experience, poor error reports will drive users away.

For an example of jMock error reporting, if we have not yet
implemented the Agent.onPriceChange method, running
testBuysWhenPriceEqualsThreshold would generate an
error report (compressed for this paper format):

mock object mockMainframe:
 expected method was not invoked:
expected once: buy(eq(<1>)), returns "Ticket"

This tells us that mainframe was expecting to be called in a
certain way and that it did not happen. The last line describes the
unfulfilled expectation and is close to the specification in the test:

mainframe.expects(once())
 .method("buy").with(eq(QUANTITY))
 .will(returnValue(TICKET));	

We can also report if a method is called incorrectly. Imagine that
the Agent.onPriceChange method corrupts the ticket. Running
the test will produce an error report like:

mockAuditing: unexpected invocation
Invoked:
 mockAuditing.bought("icket")
Allowed:
 expected once: bought(same("Ticket")), is void

This tells us that someone has incorrectly called bought on the
Auditing object with an argument of “icket”. What we actually
wanted was to call bought with a given Ticket object.

We cannot hard-code this kind of error reporting since we do not
know how the framework will be extended by its users, so we
require that all objects in the interpreter can describe themselves.
We have an interface SelfDescribing that all the core objects
must implement. For example, the ExpiredOn constraint might
implement the interface with:

public StringBuffer describeTo(StringBuffer buf) {
 return
 buffer.append(“is expired on ”)
 .append(this.date);
}

When an assertion fails, the runtime visits the objects with a Java
StringBuffer, collecting a description of the current state which
it then shows in the error message.

This is essentially the same requirement as allowing users to
extend the framework. Consistency and readability is critical, so
users need the programming hooks to make any extensions they
write indistinguishable from core features in error reporting.

7. Conclusions
MONSIEUR JOURDAIN “Well, what do you know about
that! These forty years now, I've been speaking in prose
without knowing it!”
 — Molière, Le Bourgeois Gentilhomme

This paper describes our experience of developing an EDSL in
Java. We worked with the concept of Mock Objects over several
years, absorbing ideas from many different sources, such as Ruby
and even IntelliJ. The various generations of the library were
picked over at length, mainly by members of the London XP
community.

Throughout this process we kept an absolute commitment to
maintaining readability and consistency; we wanted the library to
work well “under the fingers” in a modern IDE. The lesson we
learned is never to skimp on this aspect of a framework, ever. We
also try to apply the same rigour to the unit tests we write using
jMock. We also learned that the heuristics that we’ve learned for
writing good Object Oriented code do not always apply to EDSLs.

Another lesson is that there is no higher art in writing software
than finding and reifying implicit concepts. Once we had a way
of describing the communications between objects, which is at the
core of our approach to Test-Driven Development, new ideas
about the design clicked into place.

7.1 On the limits of EDSLs
We don’t know how practical it is to scale up to a complex EDSL.
The visible part of the jMock syntax has six builder interfaces,
and one test class. Immediately beneath that are twenty six
constraints, ten matchers, and eight stubs; these can be thought of
as the built-in features of the jMock EDSL. This is not a large
language — which is a good attribute of a DSL.

One of the authors worked on a project which wrote an EDSL for
a much larger domain, with mixed success. The straightforward
cases worked well, new developers said that they found the EDSL
code easy to work with and even the Business Analysts could
understand it. Complex cases were more difficult to express and
we started to create special extension objects to handle them.
These were, in effect, very powerful verbs in the language, which
kept the domain code compact but made it less obvious to read.

 What is not clear from this experience is whether the difficulties
were in the approach or its implementation. jMock is the result of
several years experience whereas the project in question suffered
from the usual commercial time pressures. We only implemented
sugar methods and an interpreter layer, we did not clean up and
implement the chained builder interfaces. The result was rather
like working in a procedural rather than an object-oriented
language. In retrospect, it might have been better to spend more
time earlier working on the language syntax, but there is no
evidence either way.

7.2 On host programming languages
Extending Java has at times been a frustrating experience. Java
has several features that very much helped us: garbage collection,
interfaces, a base object type, reflection, and dynamic proxies.
Java has some other features that made our task needlessly
difficult. The worst is basic types (such as int) which required us
to add lots of overloading. We would also like to find an easy way
to refer to methods, which should be possible since they’re
statically compiled. In comparison, C# has more features which
gives us more options when defining the EDSL (such as the
exploitation of the using clause) but requires more effort to
implement the extra edge cases in the interpreter. Also, the IDEs
available for C# have not yet caught up to those available for
Java.

Ironically, there have been antecedents for this approach since the
first structured languages. Alan Kay [8] cites

“a little-known syntactic variant in the Algol 60 official
syntax that encouraged a more readable form for made-up
procedures. This allowed a comment in a procedure call to be
replaced by the following construct:

): <some comment> (

and this would allow [for (i, 1, 10, print(a[i]))] to be written
as follows [...]:

for (i): from (1): to (10): do (print(a[i]))

which looks a lot like the Algol base language but done as a
meta-extension by the programmer for the benefit of other
programmers.”

In jMock, we appear to have invented keyword-based messaging
once again.

On the whole, it’s too hard to extend conventional host languages,
the syntax and the low-level operations get in the way. We look
forward to a new generation of language, such as Fortress [1], that
explicitly address our needs.

8. Acknowledgments
Our thanks to Tim Mackinnon, Keith Braithwaite and the eXtreme
Tuesday Club.

We gratefully acknowledge the support of Imperial College
London through EPSRC grant GR/R95715/01.

9. References
[1] Allen, E., Chase, D., Luchangco, V., Maessen, J., Ryu, S.,

Steele, G., Tobin-Hochstadt, S. The Fortress Language
Specification, Sun Microsystems.

[2] Brooks, F. P. 1995 The Mythical Man-Month (Anniversary
Ed.). Addison-Wesley Longman Publishing Co., Inc.

[3] Gamma et. al. 95 Erich Gamma, Richard Helm, Ralph
Johnson, John Vlissides. Design patterns: elements of
reusable object-oriented software, Addison-Wesley, Boston,
MA, 1995

[4] Freeman, S., Mackinnon, T., Pryce, N., and Walnes, J. 2004.
Mock roles, not objects. In Companion To the 19th Annual
ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages, and Applications
(Vancouver, BC, CANADA, October 24 - 28, 2004).
OOPSLA '04. ACM Press, New York, NY, 236-246. DOI=
http://doi.acm.org/10.1145/1028664.1028765

[5] Freese, T. EasyMock. At: http://www.easymock.org

[6] Graham, P. 1993 On Lisp: Advanced Techniques for
Common LISP. Prentice-Hall, Inc. p. 3

[7] Hudak, P. 1996. Building domain-specific embedded
languages. ACM Comput. Surv. 28, 4es (Dec. 1996), 196.
DOI= http://doi.acm.org/10.1145/242224.242477

[8] Kay, A. The Future of Programming As Seen from the 1960s.
Foreword to Ducasse, S. 2005 Squeak: Learn Programming
with Robots (Technology in Action). Apress.

[9] Lieberherr, K., Holland, I., and Riel, A. 1988. Object-
oriented programming: an objective sense of style. In
Conference Proceedings on Object-Oriented Programming
Systems, Languages and Applications (San Diego,
California, United States, September 25 - 30, 1988). N.
Meyrowitz, Ed. OOPSLA '88. ACM Press, New York, NY,
323-334. DOI= http://doi.acm.org/10.1145/62083.62113

[10] Mackinnon, T., Freeman, S., and Craig, P. 2001. Endo-
testing: unit testing with mock objects. In Extreme
Programming Examined, G. Succi and M. Marchesi, Eds.
The XP Series. Addison-Wesley Longman Publishing Co.,
Boston, MA, 287-301.

[11] Mernik, M., Heering, J., and Sloane, A. M. 2005. When and
how to develop domain-specific languages. ACM Comput.
Surv. 37, 4 (Dec. 2005), 316-344. DOI=
http://doi.acm.org/10.1145/1118890.1118892. Also CWI
Technical Report, SEN-E0309, 2003.

[12] Norvig, P. Finding and Reusing Programmer’s Work,
Proceedings of Object World Conference, January 1994.
Also at http://www.norvig.com/ow.ps

[13] Steele, G. L. 1998. Growing a language. In Addendum To
the 1998 Proceedings of the Conference on Object-Oriented
Programming, Systems, Languages, and Applications
(Addendum) (Vancouver, British Columbia, Canada). J.
Haungs, Ed. OOPSLA '98 Addendum. ACM Press, New
York, NY DOI= http://doi.acm.org/10.1145/346852.346922

[14] Vanier, M. On http://www.paulgraham.com/quotes.html

